Calculus
Base.LinAlg.diff — Method.diff{T}(f, x, n)Take the nth order derivative of $f$ with respect to $x$.
Base.LinAlg.diff — Method.diff{T}(f, x)Take the derivative of $f$ with respect to $x$
Base.sum — Method.sum{T}(f::T, k, start, finish)Compute the sum,
simplifying the sum if possible.
Examples
julia> sum(m"1/n^2", :n, 1, "inf")
2
%pi
----
6
Maxima.ilt — Method.ilt{T}(f::T, s, t)Compute the inverse Laplace transform of $f(s)$.
$t$ is the new variable and $s$ is the old variable.
Maxima.integrate — Method.integrate{T}(f::T, x, a, b)Evaluate the definite integral of $f$ with respect to $x$ from $a$ to $b$.
Maxima.integrate — Method.integrate{T}(f::T, x)Evaluate the indefinite integral
Examples
julia> integrate(:(sin(x)), :x)
:(-cos(x))See also
Maxima.laplace — Method.laplace{T}(f::T, t, s)Compute the Laplace transform of $f(t)$ where $s$ is the new variable.
Maxima.limit — Method.limit{T}(f, x, a, side)Take the left or right sided limit as $x$ approaches $a$ of $f(x)$.
side may be either "plus" or "minus" denoting the right and left sided limit respectively
Maxima.limit — Method.limit{T}(f, x, a)Take the limit as $x$ approaches $a$ of $f(x)$
Maxima.product — Method.product{T}(f::T, k, start, finish)Compute the product,
simplifying the product if possible.
Maxima.risch — Method.risch{T}(f::T, x)Compute the indefinite integral of $f$ with respect to $x$ using the Risch algorithm
See also
Maxima.taylor — Method.taylor{T}(f::T, x, x0, n)Taylor expand $f(x)$ around $x_0$ to nth order